首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1465196篇
  免费   30055篇
  国内免费   7843篇
化学   747320篇
晶体学   15299篇
力学   77688篇
综合类   119篇
数学   253629篇
物理学   409039篇
  2021年   13260篇
  2020年   16102篇
  2019年   16238篇
  2018年   17700篇
  2017年   16418篇
  2016年   30391篇
  2015年   21477篇
  2014年   30812篇
  2013年   74958篇
  2012年   46205篇
  2011年   49991篇
  2010年   42674篇
  2009年   43765篇
  2008年   46958篇
  2007年   44576篇
  2006年   44487篇
  2005年   40196篇
  2004年   38526篇
  2003年   34769篇
  2002年   34477篇
  2001年   35139篇
  2000年   28827篇
  1999年   21995篇
  1998年   19472篇
  1997年   19890篇
  1996年   19625篇
  1995年   18865篇
  1994年   18471篇
  1993年   17989篇
  1992年   18765篇
  1991年   18863篇
  1990年   18102篇
  1989年   18045篇
  1988年   17814篇
  1987年   17660篇
  1986年   16564篇
  1985年   23019篇
  1984年   24063篇
  1983年   20006篇
  1982年   21533篇
  1981年   20740篇
  1980年   20052篇
  1979年   20739篇
  1978年   21804篇
  1977年   21571篇
  1976年   21305篇
  1975年   20083篇
  1974年   19727篇
  1973年   20185篇
  1972年   14668篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
Mass spectrometry (MS) driven metabolomics is a frequently used tool in various areas of life sciences; however, the analysis of polar metabolites is less commonly included. In general, metabolomic analyses lead to the detection of the total amount of all covered metabolites. This is currently a major limitation with respect to metabolites showing high turnover rates, but no changes in their concentration. Such metabolites and pathways could be crucial metabolic nodes (e.g., potential drug targets in cancer metabolism). A stable-isotope tracing capillary electrophoresis–mass spectrometry (CE-MS) metabolomic approach was developed to cover both polar metabolites and isotopologues in a non-targeted way. An in-house developed software enables high throughput processing of complex multidimensional data. The practicability is demonstrated analyzing [U-13C]-glucose exposed prostate cancer and non-cancer cells. This CE-MS-driven analytical strategy complements polar metabolite profiles through isotopologue labeling patterns, thereby improving not only the metabolomic coverage, but also the understanding of metabolism.  相似文献   
992.
Herein we report a versatile Mizoroki–Heck-type photoinduced C(sp3)−N bond cleavage reaction. Under visible-light irradiation (455 nm, blue LEDs) at room temperature, alkyl Katritzky salts react smoothly with alkenes in a 1:1 molar ratio in the presence of 1.0 mol % of commercially available photoredox catalyst without the need for any base, affording the corresponding alkyl-substituted alkenes in good yields with broad functional-group compatibility. Notably, the E/Z-selectivity of the alkene products can be controlled by an appropriate choice of photoredox catalyst.  相似文献   
993.
Accurate diagnosis of tumor characteristics, including its location and boundary, is of immense value to subsequent therapy. Activatable magnetic resonance imaging (MRI) contrast agents that respond to tumor-specific microenvironments, such as the redox state, pH, and enzyme activity, enable better mapping of tumor tissue. However, the practical application of most reported activatable agents is hampered by problems including potential toxicity, inefficient elimination, and slow activation. In this study, we developed a zwitterionic iron complex (Fe-ZDS) as a positive MRI contrast agent for tumor-specific imaging. Fe-ZDS could dissociate in weakly acidic solution rapidly, accompanied by clear longitudinal relaxivity (r1) enhancement, which enabled the complex to act as a pH-sensitive contrast agent for tumor-specific MR imaging. In vivo experiments showed that Fe-ZDS rapidly enhanced the tumor-to-normal contrast ratio by >40 %, which assisted in distinguishing the tumor boundary. Furthermore, Fe-ZDS circulated freely in the bloodstream and was excreted relatively safely via kidneys owing to its zwitterionic nature. Therefore, Fe-ZDS is an ideal candidate for a tumor-specific MRI contrast agent and holds considerable potential for clinical translation.  相似文献   
994.
Semiconductor metal oxides (SMO)-based gas-sensing materials suffer from insufficient detection of a specific target gas. Reliable selectivity, high sensitivity, and rapid response–recovery times under various working conditions are the main requirements for optimal gas sensors. Chemical warfare agents (CWA) such as sarin are fatal inhibitors of acetylcholinesterase in the nerve system. So, sensing materials with high sensitivity and selectivity toward CWA are urgently needed. Herein, micro-nano octahedral Co3O4 functionalized with hexafluoroisopropanol (HFIP) were deposited on a layer of reduced graphene oxide (rGO) as a double-layer sensing materials. The Co3O4 micro-nano octahedra were synthesized by direct growth from electrospun fiber templates calcined in ambient air. The double-layer rGO/Co3O4-HFIP sensing materials presented high selectivity toward DMMP (sarin agent simulant, dimethyl methyl phosphonate) versus rGO/Co3O4 and Co3O4 sensors after the exposure to various gases owing to hydrogen bonding between the DMMP molecules and Co3O4-HFIP. The rGO/Co3O4-HFIP sensors showed high stability with a response signal around 11.8 toward 0.5 ppm DMMP at 125 °C, and more than 75 % of the initial response was maintained under a saturated humid environment (85 % relative humidity). These results prove that these double-layer inorganic–organic composite sensing materials are excellent candidates to serve as optimal gas-sensing materials.  相似文献   
995.
In this work, a series of 2-chalcogenylindoles was synthesized by an efficient methodology, starting from chalcogenoalkynes, including a previously unreported tellurium indole derivative. For the first time, these 2-substituted chalcogenylindoles were obtained in the absence of metal catalyst or base, under thermal conditions only. In addition, the results described herein represent a methodology with inverse regioselectivity for the chalcogen functionalization of indoles.  相似文献   
996.
The practical application of advanced personalized electronics is inseparable from flexible, durable, and even self-healable energy storage devices. However, the mechanical and self-healing performance of supercapacitors is still limited at present. Herein, highly transparent, stretchable, and self-healable poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA)/poly(vinyl alcohol) (PVA)/LiCl polyelectrolytes were facilely prepared by one-step radical polymerization. The cooperation of PAMPSA and PVA significantly increased the mechanical and self-healing capacity of the polyelectrolyte, which exhibited superior stretchability of 938 %, stress of 112.68 kPa, good electrical performance (ionic conductivity up to 20.6 mS cm−1), and high healing efficiency of 92.68 % after 24 h. After assembly with polypyrrole-coated single-walled carbon nanotubes, the resulting as-prepared supercapacitor had excellent electrochemical properties with high areal capacitance of 297 mF cm−2 at 0.5 mA cm−2 and good rate capability (218 mF cm−2 at 5 mA cm−2). Besides, after cutting in two the supercapacitor recovered 99.2 % of its original specific capacitance after healing for 24 h at room temperature. The results also showed negligible change in the interior contact resistance of the supercapacitor after ten cutting/healing cycles. The present work provides a possible solution for the development of smart and durable energy storage devices with low cost for next-generation intelligent electronics.  相似文献   
997.
The human macrophage galactose-type lectin (MGL), expressed on macrophages and dendritic cells (DCs), modulates distinct immune cell responses by recognizing N-acetylgalactosamine (GalNAc) containing structures present on pathogens, self-glycoproteins, and tumor cells. Herein, NMR spectroscopy and molecular dynamics (MD) simulations were used to investigate the structural preferences of MGL against different GalNAc-containing structures derived from the blood group A antigen, the Forssman antigen, and the GM2 glycolipid. NMR spectroscopic analysis of the MGL carbohydrate recognition domain (MGL-CRD, C181-H316) in the absence and presence of methyl α-GalNAc (α-MeGalNAc), a simple monosaccharide, shows that the MGL-CRD is highly dynamic and its structure is strongly altered upon ligand binding. This plasticity of the MGL-CRD structure explains the ability of MGL to accommodate different GalNAc-containing molecules. However, key differences are observed in the recognition process depending on whether the GalNAc is part of the blood group A antigen, the Forssman antigen, or GM2-derived structures. These results are in accordance with molecular dynamics simulations that suggest the existence of a distinct MGL binding mechanism depending on the context of GalNAc moiety presentation. These results afford new perspectives for the rational design of GalNAc modifications that fine tune MGL immune responses in distinct biological contexts, especially in malignancy.  相似文献   
998.
The highly substituted mono-aryl/alkylthio-(hetero)acenes prepared in this study have been found to be thermally more stable (Tdecomp.=331–354 °C) than the known di-aryl/alkylthio-substituted acenes by an average of 25 °C. They are also much more photostable at 254 and 365 nm (in both argon and air) than the parent anthracene and other reported anthracenes. The most photostable aryl/alkylthio-anthracenes at 254 nm were found to be 60–70 (in air) and 130 (in argon) times more stable in solution than the unsubstituted anthracene, and much more stable than known EDG/EWG-substituted anthracenes (EDG=electron-donating group, EWG=electron-withdrawing group) with an extended aromatic core. Furthermore, the acenes showed significantly higher photostability at 365 nm in both air and argon. The anthracenes were obtained by the novel thio-Friedel–Crafts/Bradsher cyclization reaction of hitherto unknown [o-(1,3-dithian-2-yl)aryl](aryl)methyl thioethers. The developed approach provides a general access to mono-aryl/alkylthio-substituted (hetero)acene frameworks containing at least three fused (hetero)aromatic rings. The characteristic feature of this approach, which leads to highly substituted acenes, is that the substituents, unlike in other methods, may be introduced at an early stage of the synthesis. DFT and TD-DFT calculations confirmed the stabilizing role of the aryl/alkylthio substituent in the mono-aryl/alkylthio-substituted anthracenes, which are the most stable anthracenes prepared to date. Their high photostability is mainly due to the quenching of singlet oxygen by the acene and the quenching of the acene S1 state by molecular oxygen.  相似文献   
999.
A zwitterionic heterocyclic boronic acid based on 4-isoquinolineboronic acid (IQBA) exhibits the highest reported binding affinity for sialic acid or N-acetylneuraminic acid (Neu5Ac, K=5390±190 m −1) through the formation of a cyclic boronate ester complex under acidic conditions (pH 3). This anomalous pH-dependent binding enhancement does not occur with common neutral saccharides (e.g., glucose, fructose, sorbitiol), because it is mediated via selective complexation to a α-hydroxycarboxylate moiety forming a stable ion pair and ternary complex with Neu5Ac in phosphate buffer. IQBA expands biorecognition beyond classical vicinal diols under neutral or alkaline buffer conditions, which enables the direct analysis of Neu5Ac by native fluorescence with sub-micromolar detection limits.  相似文献   
1000.
ABSTRACT

The Coupled-Cluster (CC) theory is one of the most successful high precision methods used to solve the stationary Schrödinger equation. In this article, we address the mathematical foundation of this theory with focus on the advances made in the past decade. Rather than solely relying on spectral gap assumptions (non-degeneracy of the ground state), we highlight the importance of coercivity assumptions – Gårding type inequalities – for the local uniqueness of the CC solution. Based on local strong monotonicity, different sufficient conditions for a local unique solution are suggested. One of the criteria assumes the relative smallness of the total cluster amplitudes (after possibly removing the single amplitudes) compared to the Gårding constants. In the extended CC theory the Lagrange multipliers are wave function parameters and, by means of the bivariational principle, we here derive a connection between the exact cluster amplitudes and the Lagrange multipliers. This relation might prove useful when determining the quality of a CC solution. Furthermore, the use of an Aubin–Nitsche duality type method in different CC approaches is discussed and contrasted with the bivariational principle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号